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1 Introduction
1.1 Groups

Definition. A symmetry is a transformation of a set of dynamical variables, under which the
forms of all physical laws are invariant.

Example. Consider rotations in 3D space:

x ∈ R3 7→ x′ = M · x ∈ R3

Here, M is a 3× 3 real special orthogonal matrix:

detM = 1 MᵀM = 1

Newton’s second law is invariant under these transformations, so rotations are a symmetry of
Newtonian mechanics.

F = ma −→ F′ = ma′

Group theory provides us with a useful mathematical formulation of symmetries.

Definition. A group (G, ·) is a set G equipped with a multiplication operator · with the
following properties:

(i) Closure: g1, g2 ∈ G =⇒ g1 · g2 ∈ G

(ii) Identity: ∃ e ∈ G s. t. e · g = g = g · e ∀ g ∈ G

(iii) Inverses: ∀ g ∈ G ∃ g−1 ∈ G s. t. g · g−1 = g−1 · g = e

(iv) Associativity: g1 · (g2 · g3) = (g1 · g2) · g3 ∀ g1, g2, g3 ∈ G

The set in question may be either finite or infinite. We say that (G, ·) is abelian or commutative if
g1 · g2 = g2 · g1 ∀ g1, g2 ∈ G.
Often we will omit · and just write G = (G, ·) and g1g2 = g1 · g2.
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1.2 Manifolds 1 INTRODUCTION

Example. Rotations in 3D space form a non-abelian group under composition1. We call the
group of 3× 3 real special orthogonal matrices SO(3). The elements of SO(3) depend on three
parameters: n̂ ∈ S2, θ ∈ [0, π].

1.2 Manifolds

Definition. An n-manifold is a space which locally looks like Rn.

Example. The 2-sphere S2 is a 2-manifold.

Let M be a smooth manifold of dimension D, and let p be a point in M. Since M is locally like
RD, we can introduce a set of coordinates {xi}, i = 1, . . . , D into an open subset of the manifold,
with origin at p.

Definition. The tangent space to M at p, denoted Tp(M), is the D-dimensional vector space
spanned by the differential operators { ∂

∂xj }, j = 1, . . . , D.

Tp(M)
p

M

Suppose f :M→ R is a function on M, and let V = V i ∂
∂xi ∈ Tp(M). The action of V on f is

defined as follows:
V (f) = V i ∂f

∂xi

∣∣∣∣
x=0

Consider a smooth curve on M:
C : R → M

t 7→ xi(t)

Suppose this curve goes through p at t = 0. We can associate a tangent vector at p with C in the
following way:

VC = ẋi(0) ∂

∂xi
∈ Tp(M) where ẋi = dxi

dt
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1.3 Lie groups 1 INTRODUCTION

VC ∈ Tp(M)p

M

If we let VC act on a function f we can see that it is simply the total derivative of f along the
curve at p:

VC(f) = ẋi
∂

∂xi
f(x)

∣∣∣∣
x=0

= dxi

dt
∂f

∂xi

∣∣∣∣∣
x=0

= df
dt

∣∣∣∣
p

In physics, often C is the trajectory of a particle or other dynamical object, and VC represents its
velocity vector.

1.3 Lie groups

Definition. A Lie group G is a group which is also a smooth manifold. The group and
manifold structures must be compatible, so for example the product · : G×G→ G and inverse
operations must be smooth maps.

We will see that G is (almost) completely determined by its behaviour “near” the identity e.
We denote the manifold of G by M(G). The dimension of G, denoted dimG, is equivalent to the
dimension of M(G).
Let’s introduce a set of coordinates {θi}, i = 1, . . . , D = dimG in some local neighbourhood of the
identity e ∈ G, with e at the origin. The group elements in this neighbourhood depend continuously
on the {θi}, and we can write g = g(θ).
Multiplication of two of these elements corresponds to a smooth map G×G→ G:

g(θ)g(θ′) = g(φ) ∈ G

1.4 Matrix groups
Let Matn(F ) denote the set of n× n matrices over a field F . In these notes we will henceforth only
consider F = R or C. Matrix multiplication is closed, associative, and there exists an identity, but
Matn(F ) is not a group under multiplication because not all elements have inverses. The “largest”
multiplicative group contained in Matn(F ) is the general linear group, containing all invertible
n× n matrices:

GL(n, F ) = {M ∈ Matn(F ) s. t. detM 6= 0}
If we require the determinant to be equal to 1, we obtain the special linear group:

SL(n, F ) = {M ∈ Matn(F ) s. t.detM = 1}

Note that the closure of and existence of inverses in SL(n, F ) follows from the fact that multiplication
commutes with taking the determinant, i.e. det(M1M2) = detM1 detM2.
We can see that these are groups; slightly less obviously they are also Lie groups.

dimGL(n,R) = n2 dimGL(n,C) = 2n2

dimSL(n,R) = n2 − 1 dimSL(n,C) = 2n2 − 1
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1.4 Matrix groups 1 INTRODUCTION

Definition. A subgroup H of a group G is a subset of G which is also a group. If H is also a
smooth submanifold, then we say that H is a Lie subgroup.

Of interest are the orthogonal groups, which are subgroups of GL(n,R):

O(n) = {M ∈ GL(n,R) s. t.MᵀM = 1}

Orthogonal transformations preserve the lengths of vectors.

|v′|2 = v′ᵀv′ = vᵀMᵀMv = vᵀv = |v|2

We also have (detM)2 = det(MᵀM) = det1 = 1, so detM = ±1. The two cases correspond to the
two connected components of O(n). Elements in the positive determinant component correspond to
rotations in n-dimensional space, and elements in the negative determinat component correspond
to a reflection composed with rotations. The fact that the identity does not contain a reflection
allows us to define the special orthogonal groups:

SO(n) = {M ∈ O(n) s. t. detM = +1}

It can be checked that dimO(n) = dimSO(n) = 1
2n(n+ 1).

It is easy to show that if λ is an eigenvalue of an orthogonal matrix M , then we have the following:

(i) λ∗ is also an eigenvalue of M .

(ii) |λ|2 = 1

Example. Let M ∈ SO(2). From the above, we can deduce that the eigenvalues of M are
λ = e±iθ for some θ ∈ R, and we can write:

M(θ) =
(

cos θ − sin θ
sin θ cos θ

)

These matrices are uniquely specified by θ if we restrict 0 ≤ θ < 2π. Since M(θ) = M(θ + 2π),
we can identify the manifold of SO(2) as the circle:

M(SO(2)) ' S1

Example. Let M ∈ SO(3). From the above properties, we can see that the eigenvalues of M
must be λ = 1, e±iθ for some θ ∈ R. Let n̂ be a normalised eigenvector for λ = 1. We have
M n̂ = n̂; n̂ is parallel to the axis of rotation of M . It can be shown that a general group
element of SO(3) can be written in the following form:

M(n̂, θ)ij = cos θδij + (1− cos θ)ninj − sin θεijknk

Note that M(n̂, 2π − θ) = M(−n̂, θ). We can still specify all group elements if we restrict
0 ≤ θ ≤ π. Note also that M(n̂, 0) = 1∀ n̂.
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1.4 Matrix groups 1 INTRODUCTION

Consider w = θn̂. Values of w in the 3-ball of radius π specify the elements of SO(3).

B3 = {w ∈ R3 s. t. |w| ≤ π} ⊂ R3 ∂B3 = {w ∈ R3 s. t. |w| = π} ' S2

If we identify θ = π with θ = −π, then we uniquely specify points in SO(3). Hence, M(SO(3))
is defined from B3 by indentifying antipodal points on the boundary ∂B3.

M(SO(3)) = B3/ ∼ where w ∼ w′ ⇐⇒ w = −w′ and |w| = π

This manifold has the following properties:

• It has no boundary.

• It is connected (a path exists between any two points) but not simply connected (not all
closed loops can contract to a point).

• Its fundamental group is equivalent to the integers mod 2: Π1(SO(3)) = Z2.

• It is compact (closed and bounded).

Note that the fact that orthogonal transformations preserve the lengths of vectors is equivalent to
saying that they preserve the Euclidean metric on Rn, i.e. g = 1. If we substitute the Euclidean
metric for a more general metric of signature (p, q):

η =
(
1p 0
0 −1q

)

then we obtain the group O(p, q):

O(p, q) = {M ∈ GL(n,R) s. t.MᵀηM = η}

Example. The Lorentz group is O(3, 1).

These groups are non-compact.
If we replace R with C and transposition with Hermitian conjugation in the above, we can obtain
the unitary groups:

U(n) = {U ∈ GL(n,C) s. t. U †U = 1}

Note that now, since the U are complex matrices, we have detU) = eiδ where δ ∈ R. If we enforce
that detU = 1, we obtain the special unitary groups:

SU(n) = {U ∈ U(n) s. t. detU = 1}

Definition. Two Lie groups G and G′ are isomorphic, denoted G ' G′, if there exists a
bijective smooth map J from one group to the other, and this map preserves the group
structure, i.e.:

J(g1g2) = J(g1)J(g2)
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1.5 Lie algebras 1 INTRODUCTION

Example. Let’s examine U(1) = {z ∈ C s. t. |z|2 = 1}. From this definition we see that
elements in U(1) take the form z = eiθ, θ ∈ [0, 2π), and we can immediately observe that
U(1) ' SO(2), with isomorphism function given by:

eiθ 7→
(

cos θ − sin θ
sin θ cos θ

)

Example. It can be shown that a general form for all U ∈ SU(2) is:

U = a01 + ia · σ

where the σi, i = 1, 2, 3 are the Pauli matrices. Importantly, we must have a2
0 +a2

1 +a2
2 +a2

3 = 1,
which shows that M(SU(2)) = S3.

1.5 Lie algebras

Definition. A Lie algebra g is a vector space over a field F , equipped with a bracket [ , ] :
g× g→ g with the following properties:

(i) Anti-symmetry: [X,Y ] = −[Y,X]

(ii) Linearity: [αX + βY, Z] = α[X,Z] + β[Y,Z]

(iii) Jacobi identity: [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

Example. If a vector space V has an associative linear product ∗, then we can get a Lie
algebra by setting:

[X,Y ] = X ∗ Y − Y ∗X

This bracket is known as the commutator. The commutator can provide lots of examples of
Lie algebras. For example, we can let V be a vector space of matrices, and let ∗ be matrix
multiplication.

The dimension of a Lie algebra g, denoted dim g, is given by the dimension of its vector space.
If we choose a basis {T a}, where a = 1, . . . , n = dim g, we can expand any X ∈ g in terms of its
components:

X = XaT
a

Definition. If we apply the bracket to any two basis vectors, we obtain the structure constants
fabc :

[T a, T b] = fabc T
c

7



1.5 Lie algebras 1 INTRODUCTION

Note that the structure constants are dependent on the basis chosen. From the properties of the
bracket, the structure constants obey the following:

fabc = −f bac
f [ab
c fd]c

e = 0

Definition. Two Lie algebras g and g′ are isomorphic if there exists a bijective linear map
f : g→ g′ that preserves the bracket:

[f(X), f(Y )] = f([X,Y ])

We are concerned with classifying Lie algebras up to isomorphism.

Definition. A subalgebra h ⊂ g is a subset which is also a Lie algebra.

Definition. An ideal h of g is a subalgebra such that [X,Y ] ∈ h∀X ∈ g, Y ∈ h.

Example. Every Lie algebra g has two trivial ideals:

h = {0}, h = g

Example. The derived algebra:

i(g) = {[X,Y ] s. t. X, Y ∈ g}

is an ideal.

Example. The center :

J(g) = {X ∈ g s. t.[X,Y ] = 0∀Y ∈ g}

is an ideal.

Definition. A Lie algebra is said to be abelian if its bracket is always equal to 0.

If g is abelian, then i(g) = {0} and J(g) = g.

Definition. A Lie algebra g is said to be simple if it is non-abelian and has no non-trivial
ideals.

If g is simple, then i(g) = g and J(g) = {0}.
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2 LIE ALGEBRAS FROM LIE GROUPS

2 Lie algebras from Lie groups
2.1 L(G)
Let G be a Lie group of dimension D and introduce coordinates {θi}, i = 1, . . . , D in a region
containing the identity e at θ = 0. We have that Te(G) is a vector space of dimension D. We will
define a bracket [ , ] : Te(G)× Te(G)→ Te(G) which will show that L(G) = (Te(G), [ , ]) is a Lie
algebra.
This is easiest do for matrix Lie groups G ⊂ Matn(F ). We can map tangent vectors to matrices:

Te(G) 3 vi ∂
∂θi
7→ vi

∂g(θ)
∂θi

∣∣∣∣
θ=0
∈ Matn(F )

With this mapping we identify Te(G) with the subspace of Matn(F ) spanned by {∂g(θ)
∂θi }, i = 1, . . . , D.

Now we can define the obvious bracket, the matrix commutator :

[X,Y ] = XY − Y X

This obeys most of the properties of a Lie bracket. The only one that is slightly non-trivial is that
the Lie algebra is closed under the bracket, i.e. [X,Y ] ∈ span{∂g(θ)

∂θi }. We will show this now.
To do so we use the correspondence between curves and tangent vectors shown earlier. Suppose C
is a curve with that passes through the identity e with tangent vector X ∈ Te(G) = L(G):

C : t 7→ g(t) ∈ G g(0) = e = 1

Since dg(t)
dt

∣∣∣
t=0

, we can expand g(t) as a Taylor series near t = 0 in the following way:

g(t) = 1 + tX +O(t2)

Now suppose we have two elements X1, X2 ∈ L(G) and corresponding curves C1, C2:

C1 : t 7→ g1(t) ∈ G g1(0) = g2(0) = 1

C2 : t 7→ g2(t) ∈ G ġ1(0) = X1, ġ2(0) = X2

Now expanding to second order, we can write:

g1(t) = 1 +X1t+W1t
2 +O(t3)

g2(t) = 1 +X2t+W2t
2 +O(t3)

for some W1,W2 ∈ Matn(F ). In order to show that L(G) is closed, we need to find a new curve
with tangent vector [X1, X2]. To that end, let us define h(t) = g−1

1 (t)g−1
2 (t)g1(t)g2(t). Obviously

h(0) = 1, so we can set h(t) = 1 + h1t + h2t
2 + O(t3). If we evaluate g2(t)g1(t)h(t) = g1(t)g2(t)

term by term, we find that W1,W2 cancel from our equations and we obtain:

h1 = 0, h2 = [X1, X2]

So define a new curve C3:
C3 : s 7→ g3(s) = h(

√
s) ∈ G

We have:
g3(s) = 1 + s[X1, X2] +O(s3/2)

Thus the tangent vector to this curve at the identity is [X1, X2]. So we have shown that [X1, X2] ∈
L(G) and thus that L(G) is closed. Therefore, L(G) is a real2 Lie algebra of dimension D.

2That is, it has real structure constants
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2.1 L(G) 2 LIE ALGEBRAS FROM LIE GROUPS

Example. Consider G = SO(2). A curve on G can be written:

g(t) = g(θ(t)) =
(

cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

)

=⇒ ġ(0) =
(

0 −1
1 0

)
θ̇(0)

where we have assumed g(0) = 1. Therefore we can deduce the Lie algebra associated with G:

L(SO(2)) =
{(

0 −c
c 0

)
, c ∈ R

}

Example. More generally, consider G = SO(n) or O(n), and let g(t) = R(t) be a curve in G
that goes through the identity at t = 0. We have:

Rᵀ(t)R(t) = 1

Differentiating both sides with respect to t gives:

Ṙᵀ(t)R(t) +Rᵀ(t)Ṙ(t) = 0

If we now set t = 0, and use R(0) = 1, we obtain:

Xᵀ +X = 0

where Ṙ(0) = X ∈ L(G). In other words, X is antisymmetric. Hence:

L(SO(n)) = L(O(n)) = {X ∈ Matn(R) s. t. Xᵀ = −X}

By examining the number of independent components in an antisymmetric matrix, we can
deduce that dimG = 1

2n(n− 1).

Example. Consider G = SU(n). As before let g(t) = U(t) ∈ SU(n) with U(0) = 1.

U †(t)U(t) = 1 =⇒ Z† + Z = 0

where Z = U̇(0), i.e. Z is anti-Hermitian. But we have another constraint that will be relevant:

detU(t) = 1

Let’s Taylor expand near t = 0:

U(t) = 1 + tZ +O(t2)
=⇒ detU(t) = 1 + trZt+O(t2)

10



2.1 L(G) 2 LIE ALGEBRAS FROM LIE GROUPS

Thus we must have trZ = 0. Therefore:

L(SU(n)) = {Z ∈ Matn(C) s. t. Z† = −Z, trZ = 0}

There are 2n2− n2− 1 = n2− 1 independent components of a traceless anti-Hermitian complex
matrix, so we have dimG = n2 − 1.

We did not consider the detR = 1 case for L(SO(n)), but if we had we would have again obtained
that trR = 0. Note however that R being antisymmetric implies that R is traceless, so we do not
need to additionally specify this.

Example. From above, we have L(SU(2)) = {2× 2 traceless anti-Hermitian matrices}. Con-
sider the Pauli matrices:

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)

These are traceless and Hermitian. Thus we can choose the following basis for for L(G):

T a = −1
2 iσa

where the factor of −1
2 is for future convenience. The Pauli matrices obey the following

convenient identity:
σaσb = δab1 + iεabcσc

With this we can calculate the bracket of any two basis elements:

[T a, T b] = −1
2[σa, σb] = −1

2 iεabcσc = εabcT
c

So the structure constants are fabc = εabc.

Example. We have L(SO(3)) = {3 × 3 real antisymmetric matrices}. It is convenient to
choose the following basis:

T 1 =

0 0 0
0 0 −1
0 1 0

 T 2 =

 0 0 1
0 0 0
−1 0 0

 T 3 =

0 −1 0
1 0 0
0 0 0


The reason this basis is convenient is that we can write (T a)bc = −εabc. It is not difficult to
then show that [T a, T b] = εabcT

c, so the structure constants are fabc = εabc.

Since we can choose bases in which SO(3) has the same structure constants as SU(2), we have
L(SO(3)) ' L(SU(2)), despite the fact that SO(3) 6' SU(2).
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2.2 Natural maps on Lie groups 2 LIE ALGEBRAS FROM LIE GROUPS

2.2 Natural maps on Lie groups

Definition. Let G be a Lie group. For each h ∈ G we have two smooth maps Lh, Rh, called
left translation and right translation respectively:

Lh : G → G
g 7→ hg

Rh : G → G
g 7→ gh

In what follows we will focus on Lh, but similar results apply for Rh.

Lemma 1. Lh is a diffeomorphism3.

Proof. We have Lh(h−1g) = g for all g ∈ G, so Lh is surjective. Suppose g, g′ ∈ G and Lh(g) =
Lh(g′). Then hg = hg′ =⇒ g = g′, so Lh is injective. Thus Lh is a bijection, and since it is defined
as a product of two Lie group elements, it is a smooth one. Furthermore, we have that the inverse
map (Lh)−1 = Lh−1 is also smooth.

Here we will sketch the consequences of this proposition. Introduce a set of coordinates {θi}, i =
1, . . . , D, with e at θ = 0. Let g = g(θ) ∈ G and g′ = g(θ′) = Lh(g) = hg(θ). From this we see that
Lh is specified by θ′i = θ′i(θ). Since Lh is a diffeomorphism, the Jacobian matrix exists:

J ij(θ) = ∂θ′i

∂θj

and it must be invertible, i.e. det J 6= 0.
Left translation Lh induces a map L∗h from tangent vectors at g ∈ G to tangent vectors at
Lh(g) = hg ∈ G.

Tg(G) g

Tg′(G) g′ = hg

G

We define this map in the following way:

L∗h : Tg(G) → Thg(G)
V = V i ∂

∂θi 7→ V ′ = V ′i ∂
∂θ′i

where V ′i = J ij(θ)V j

Definition. A vector field V assigns a tangent vector to each point g ∈ G:

V (g) ∈ Tg(G)

3i.e. a smooth bijection with a smooth inverse.
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Starting with a non-zero tangent vector at the identity W ∈ Te(G), we can define a vector field by:

V (g) = L∗g(W )

This vector field is smooth, and since J is invertible it is non-vanishing. So if we start with a
basis {Wa}, a = 1, . . . , D of the tangent space at the identity, then we obtain D independent
non-vansishing vector fields Va(g) = L∗g(Wa). Although it may not seem so at first, the presence of
these vector fields is a very strong constraint.

Example. The so-called “Hairy ball theorem” says that a smooth vector field defined on S2

must have at least one zero. Thus we cannot have a Lie group whose underlying manifold
is the 2-sphere. So suppose G is a compact Lie group of dimension 2. Then we must have
G = T 2 = S1 × S1, and G ' U(1)× U(1). This is the only Lie group of dimension 2.

Now consider matrix Lie groups.

Lemma 2. Suppose we have a matrix Lie group G ⊂ Matn(F ), and h ∈ G,X ∈ L(G). Then
L∗h(X) = hX ∈ Th(G).

Proof. Let C be a curve with tangent vector X at the identity:

C : R → G
t 7→ g(t) g(0) = e ġ(0) = X

Near t = 0 we can write:
g(t) = 1 + tX +O(t2)

Now define a new curve:

C1 : R → G
t 7→ h(t) = hg(t)

We have h(0) = h and ḣ(0) = hġ(0) = hX, and hence near t = 0:

h(t) = h+ thX +O(t2)

Thus hX ∈ Th(G).

Corollary. Given some smooth curve in G:

C : R → G
t 7→ g(t) ġ(t) ∈ Tg(t)(G)

we can deduce that:
g−1(t)ġ(t) = L∗g−1(t)(ġ(t)) ∈ Te(G) = L(G)

Conversely, given X ∈ L(G), the following yields a curve in G:

g−1(t)ġ(t) = X g(0) = 1 (∗)

13



2.2 Natural maps on Lie groups 2 LIE ALGEBRAS FROM LIE GROUPS

Definition. The exponential of a matrix M ∈ Matn(F ) is given by the following:

ExpM =
∞∑
l=0

1
l!M

l ∈ Matn(F )

We can solve (∗) by setting g(t) = Exp(tX).

Proof. We immediately have g(0) = Exp(0) = 1. Also:

g(t) = Exp(tX) =
∞∑
l=0

1
l! t

lX l

=⇒ ġ(t) = X

( ∞∑
l=0

1
l! t

lX l

)
= Exp(tX)X = g(t)X

=⇒ g−1(t)ġ(t) = X

A useful identity that holds for all X ∈ Matn(F ) is:

det(ExpX) = exp(tr(X))

Lemma 3. With a suitable choice of range J the set SX,J = {g(t) = Exp(tX)∀ t ∈ J ⊂ R} is an
abelian Lie subgroup of G with dimension 1, and SX,J ' U(1) or (R,+).

Proof. (sketch) We have:
g(t1)(t2) = g(t1 + t2) = g(t2)g(t1)

so SX,J is abelian and closed. Also we have an identity g(0) = 1 and inverses (g(t))−1 = g(−t).
Associativity is inherited. Now there are two cases to consider:

1. Compact case: there is some value of t1 6= 0 such that g(t1) = 1. Choose the least such t1
and set J = [0, t1).

Then we see that SX,J ' U(1) with isomorphism g(t) 7→ exp(2πit/t1).

2. Non-compact case: for all t 6= 0, g(t) 6= 1. Then set J = R, and we see that SX,J ' (R,+)
with isomorphism g(t) 7→ t.

14



2.3 Reconstructing G from L(G) 2 LIE ALGEBRAS FROM LIE GROUPS

2.3 Reconstructing G from L(G)

Definition. Setting t = 1 defines the exponential map:

Exp : L(G) → G
X 7→ ExpX

Although we will not prove it here, in some neighbourhood of the identity, Exp is a bijective
map. So, given some X,Y ∈ L(G), we have gX = Exp(X), gY = Exp(Y ) ∈ G, and we expect
gXgY = gZ = Exp(Z) for some Z ∈ L(G). Z is determined using the Baker-Campbell-Haussdorf
formula:

Exp(X) Exp(Y ) = Exp(Z) =⇒ Z = X+Y + 1
2[X,Y ]+ 1

12 ([X, [X,Y ]]− [Y, [X,Y ]])+ · · · (BCH)

So L completely determines G in some neighbourhood of the identity.
Note that Exp is not globally bijective; in particular:

• It is not surjective when G is disconnected.

• It is not injective when G has a U(1) subgroup.

Example. Consider G = O(n). We have shown above that:

L(O(n)) = {X ∈ Matn(R) s. t. Xᵀ = −X}

X being antisymmetric implies that it is traceless, and hence that det(ExpX) = exp(trX) = 1.
Therefore Exp(X) ∈ SO(n) $ O(n), so Exp is not surjective.

More generally, the image of L(G) under Exp is the connected component of the identity in G.

Example. Consider G = U(1). We have L(G) = I, the imaginary numbers. But then
Expx = Exp(x+ 2πi), so Exp is not injective.

15



2.4 SU(2) vs SO(3) 3 REPRESENTATIONS

2.4 SU(2) vs SO(3)
We have already seen that L(SU(2)) ' L(SO(3)). It is possible to construct a double-covering4 d
from SU(2) to SO(3) in the following way:

d : SU(2) → SO(3)
A 7→ d(A) where d(A)ij = 1

2 tr
(
σiAσjA

†
)

We have d(A) = d(−A). This map provides an isomorphism SO(3) ' SU(2)/Z2. Note that
Z2 = {1,−1} is the centre5 Z(SU(2)) of SU(2).

3 Representations

Definition. For any group G (not necessarily Lie), a representation is a set of non-singular
matrices

{D(g) ∈ GL(n, F ), g ∈ G}

such that
D(g1)D(g2) = D(g1g2) ∀ g1, g2 ∈ G

Definition. For any Lie algebra g, a representation is a set of matrices

{d(X) ∈ Matn(F ), X ∈ g}

such that

(i) [d(X1), d(X2)] = d([X1, X2])∀X1, X2 ∈ g

(ii) d(αX1 + βX2) = αd(X1) + βd(X2) ∀X1, X2 ∈ g, α, β ∈ F

In both cases:

Definition. The dimension of a representation is the dimension of the corresponding matrices.

Definition. Matrices act on a vector space V = Fn known as the representation space.

There is a direct relation between the representations of a Lie group G and the representations of
the corresponding Lie algebra L(G). Suppose D is a representation of dimension n of a matrix Lie
group G ⊂ Matm(F ) (note that dimG 6= dimD in general). For each X ∈ L(G), construct a curve
C : t 7→ g(t) with g(0) = 1, ġ(0) = X, and define d(X) = d

dtD(g(t))
∣∣∣
t=0
∈ Matn(F ).

Lemma 4. d is a representation of L(G).

4i.e. a globally 2:1 map.
5i.e. the normal subgroup that commutes with everything.
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3 REPRESENTATIONS

Proof. LetX1, X2 ∈ L(G) and construct the curves C1, C2 as described. Define h(t) = g−1
1 (t)g−1

2 (t)g1(t)g2(t) ∈
G. We established before that this has the following Taylor expansion:

h(t) = 1 + t2[X1, X2] +O(t3)

Now, since D is a representation of G, we have D(h) = D(g1)−1D(g2)−1D(g1)D(g2). Let’s Taylor
expand both sides.

D(h) = D(1 + t2[X1, X2] + · · · )

= D(1) + t2
( d

d (t2)D(h(t))
)
t=0

+ · · ·

= 1 + t2d([X1, X2]) + · · ·
D(g1)−1D(g2)−1D(g1)D(g2) = 1 + t2[d(X1), d(X2)] + . . .

So, by comparing both the coefficient of t2 on both sides, we have d([X1, X2]) = [d(X1), d(X2)].
Also, linearity is automatic.

Conversely, given a representation d of L(G), define D(g = ExpX) = Exp(d(X)).

Lemma 5. D is a representation of ImExp(L(G)).

Unlectured. Proof. First note that D(g) is nonsingular for g ∈ G. Suppose g1 =
Exp(X1), g2 = Exp(X2) ∈ ImExp(L(G)). By applying (BCH) twice we have:

D(g1g2) = Exp
(
d

(
X1 +X2 + 1

2[X1, X2] + · · ·
))

= Exp
(
d(X1) + d(X2) + 1

2[d(X1), d(X2)] + · · ·
)

= Exp(d(X1)) Exp(d(X2)) = D(g1)D(g2)

Definition. The trivial representation d0 of a Lie algebra g is defined by d0(X) = 0∀X ∈ g.

Definition. The fundamental representation df of a matrix Lie algebra g is defined by
df (X) = X ∀X ∈ g.

Definition. Every Lie algebra g has an adjoint representation dAdj defined as follows: the
representation space is g itself, and dAdj(X) = adX ∀X ∈ g, where adX is defined by adX(Y ) =
[X,Y ]∀Y ∈ g.

If we choose a basis B = {T a}, a = 1, .., D for g, then we can write:

[adX(Y )]c = [X,Y ]c = XaYbf
ab
c = (RX)bcYb

where [dAdj(X)]bc = (RX)bc = Xaf
ab
c is a D ×D matrix.

17



3.1 Representation theory of L(SU(2)) 3 REPRESENTATIONS

We should check that dAdj is a valid representation:

[dAdj(X), dAdj(Y )](Z) = (adX adY − adY adX)(Z)
= [X, [Y,Z]]− [Y, [X,Z]
= [[X,Y ], Z] (Jacobi identity)
= ad[X,Y ](Z) = dAdj([X,Y ])(Z)

Definition. Two representations R1, R2 of a Lie algebra g are called equivalent or isomorphic
if there exists a non-singular matrix S such that:

R2(X) = SR1(X)S−1 ∀X ∈ g

S represents a change of basis in representation space.

Definition. A representation R of a Lie algebra g with representation space V has an invariant
subspace U ⊂ V if:

R(X)u ∈ U ∀X ∈ g, u ∈ U

Any representation has two trivial invariant subspaces {0} and V .

Definition. An irreducible representation or irrep of a Lie algebra g is a representation of g
with no non-trivial invariant subspaces.

3.1 Representation theory of L(SU(2))
Before we noted that {T a = −1

2σa} is a real basis of L(SU(2)). In order to explore the representa-
tions of L(SU(2)), we will need to use a new basis:

Definition. The Cartan-Weyl basis of L(SU(2)) is a complex basis with the following elements:

H = σ3 =
(

1 0
0 −1

)

E+ = 1
2(σ1 + iσ2) =

(
0 1
0 0

)

E− = 1
2(σ1 − iσ2) =

(
0 0
1 0

)

We have:

[H,E±] = ±2E±
[E+, E−] = H

18



3.1 Representation theory of L(SU(2)) 3 REPRESENTATIONS

E± are known as step operators. Note adH(H) = 0, adH(E±) = ±2E±, so the Cartan-Weyl
generators are eigenvectors of adH : H,E+, E− have eigenvalues 0, 2,−2 respectively, and these
eigenvalues are known as the roots of L(SU(2)).
Consider a finite dimensional representation R of L(SU(2)) with representation space V , and
assume that R(H) is diagonalisable. Then V is spanned by the eigenvectors of R(H):

R(H)vλ = λvλ, λ ∈ C

The eigenvalues {λ} of R(H) are known as the weights of R. We have:

R(H)R(E±)vλ = (R(E±)R(H) + [R(H), R(E±)]︸ ︷︷ ︸
=±2R(E±)

)vλ

= (λ± 2)R(E±)vλ

Hence R(E±)vλ is either another eigenvector of R(H), or it is equal to 0.
Since R is finite dimensional, it must have a highest weight Λ ∈ C, by which we mean one with
R(E+)vΛ = 0 (as otherwise we could generate an infinite number of independent vectors in the
representation space). If R is irreducible, then we expect to be able to find all of the remaining
basis vectors of V by acting on vΛ with R(E±). To that end, define:

vΛ−2l = (R(E−))l vΛ, l ∈ N

We have R(H)vΛ−2l = (Λ − 2l)vΛ−2l, R(E−)vΛ−2l = vΛ−2l−2. Also, R(E+)vΛ−2l = rlvΛ−2l+2 for
some rl ∈ C. We can find a recurrence relation for rl:

R(E+)vΛ−2l = R(E+)R(E−)vΛ−2l+2

= (R(E−)R(E+) + [R(E+), R(E−)]︸ ︷︷ ︸
=R(H)

)vΛ−2l+2

= (R(E−)R(E+) + (Λ− 2l + 2)) vΛ−2l+2

=⇒ rl = rl−1 + (Λ− 2l + 2)

Using r0 = 0, we can solve this to obtain rl = (Λ + 1− l)l.
The fact that R is a finite dimensional irrep implies that there must be a least weight and it must
be of the form Λ− 2N for some N ∈ N. That is, vΛ−2N 6= 0, R(E−)vΛ−2N = 0. This implies that
vΛ−2N−2 = 0, which in turn implies that rN+1 = (Λ−N)(N + 1) = 0. Hence, Λ = N .
So we can conclude that the finite dimensional irreps of L(SU(2)) are RΛ where Λ ∈ Z,Λ ≥ 0, with
the following properties:

• RΛ has weights {−Λ,−Λ + 2, . . . ,Λ} ⊂ Z.

• Each weight has multiplicity one.

• dimRΛ = Λ + 1 if Λ > 0, = 0 if Λ = 0.

Example. We have already seen the following representations:

• R0 = d0, the trivial representation.

• R1 = df , the fundamental representation.

• R2 = dAdj, the adjoint representation.
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3.2 New representations from old 3 REPRESENTATIONS

This is equivalent to the theory of angular momentum in quantum mechanics. We have the hermitian
operators J = (J1, J2, J3). Eigenstates are labelled by j ∈ Z/2, j ≥ 0 and m ∈ Z/2 or Z,−j ≥ m ≥
j, with J2 |j,m〉 = j(j + 1) |j,m〉, J3 |j,m〉 = m |j,m〉.

J3 = 1
2R(H) J± = J1 ± iJ2 = R(E±)

Λ = 2j λ = 2m
vΛ ∼ |j, j〉 vΛ−2l ∼ |j, j − l〉

Locally, we can parametrise A ∈ SU(2) as A = Exp(X), X ∈ L(SU(2)). Define DΛ(A) =
Exp(RΛ(X). It is easy to check that this gives a valid representation of SU(2), but it does not
always give a valid representation of SO(3) ' SU(2)/Z2. For DΛ to be a representation of SO(3),
we require DΛ(−1) = DΛ(1) =⇒ DΛ(−A) = DΛ(A)∀A ∈ SU(2). Note that −1 = Exp(iπH), so
DΛ(−1) = Exp(iπRΛ(H)). RΛ(H) has eigenvalues in SΛ = {−Λ,−Λ + 2, . . . ,Λ}, so DΛ(−1) has
eigenvalues exp(iπλ), λ ∈ SΛ. We then have two cases:

• Λ ∈ 2Z. This implies that all eigenvalues of DΛ(−1) are equal to 1, so DΛ(−1) = 1 = DΛ(−1).
Thus DΛ is a representation of both SU(2) and SO(3).

• Λ ∈ 2Z + 1. This implies that some eigenvalues of DΛ(−1) are equal to −1, so DΛ(−1) 6=
DΛ(−1). Thus DΛ is a representation of SU(2) but not SO(3).

Rotational symmetry in 3D is naively SO(3), but we see that in quantum mechanics this is not
necessarily the case. For example, electrons have spin 1

2 , and so their angular momentum states
live in R1, which is not a representation of SO(3). In some sense, we can say that if Λ ∈ 2Z + 1,
then RΛ is a “spinor” representation of SO(3) (but this is an abuse of language).

3.2 New representations from old

Definition. If g is a real Lie algebra, and R is a representation of g, then the conjugate
representation R̄ is defined by R̄(X) = R(X)∗ ∀X ∈ g.

Sometimes, but not always, R̄ ' R.

Definition. Suppose R1 and R2 are representations of a Lie algebra g with representation
spaces V1 and V2, and dimensions d1 and d2 respectively.

• The direct sum R1⊕R2 is a (d1 +d2)-dimensional representation of g acting on V1⊕V2 =
{v1 ⊕ v2 s. t. v1 ∈ V1, v2 ∈ V2} in the following way:

(R1 ⊕R2)(X)(v1 ⊕ v2) = (R1(X)v1)⊕ (R2(X)v2) ∀X ∈ g

• The tensor product R1⊗R2 is a d1d2-dimensional representation of g acting on V1⊗V2 =
{v1 ⊗ v2 s. t. v1 ∈ V1, v2 ∈ V2} in the following way:

(R1 ⊗R2)(X)(v1 ⊗ v2) = (R1(X)v1)⊗ v2 + v1 ⊗ (R2(X)v2) ∀X ∈ g
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3.2 New representations from old 3 REPRESENTATIONS

More explicitly, we can write (R1 ⊕R2)(X) as a matrix:

(R1 ⊕R2)(X) =
(
R1(X) 0

0 R2(X)

)
l d1
l d2

If we choose bases B1 = {vj1}, j = 1, . . . , d1 and B2 = {vα2 }, α = 1, . . . , d2 for V1 and V2 respectively,
then we can define a basis for V1 ⊗ V2:

B1⊗2 = B1 ⊗B2 = {vj1 ⊗ vα2 s. t. j = 1, . . . , d1, α = 1, . . . , d2}

So the dimension of R1 ⊗R2 is indeed d1d2. Let w ∈ V1 ⊗ V2 have components wjα in B1⊗2. Then
we can write (R1 ⊗R2)(X) in terms of its components:

(R1 ⊗R2)(X)iα,jβ = R1(X)ij1αβ + 1ijR2(X)αβ

Unlectured. We should show that R1 ⊗R2 is a valid representation. We have:

(R1 ⊗R2)([X,Y ]) = R1([X,Y ])⊗ 1 + 1⊗R2([X,Y ])
= [R1(X), R1(Y )]⊗ 1 + 1⊗ [R2(X), R2(Y )]
= [R1(X)⊗ 1, R1(Y )⊗ 1] + [R1(X)⊗ 1,1⊗R2(Y )]

+ [1⊗R2(X), R1(Y )⊗ 1] + [1⊗R2(X),1⊗R2(Y )]
= [R1(X)⊗ 1 + 1⊗R2(X), R1(Y )⊗ 1 + 1⊗R2(Y )]
= [(R1 ⊗R2)(X), (R1 ⊗R2)(Y )]

where we have used the fact that A⊗ 1 commutes with 1⊗B for any A,B. Also, R1 ⊗R2 is
inherently linear.

Definition. A representation is fully reducible if it can be written as a direct sum of non-trivial
irreps.

If a representation R is reducible, then it has an invariant subspace, and we can find a basis where:

R(X) =
(
A(X) B(X)

0 C(X)

)
∀X ∈ g

If R is fully reducible, then we can furthermore find a basis such that B(X) = 0∀X ∈ g. More
generally, if R is fully reducible, then we have a basis where R(X) is block diagonal:

R(X) =


R1(X)

R2(X)
. . .

Rn(X)


and each Ri is an irrep.

Lemma 6. If Ri, i = 1, . . . ,m are finite dimensional irreps of a complex simple Lie algebra g, then
tensor product of the Ri is fully reducible:

m⊗
i=1

Ri =
m̃⊕
i=1

R̃i some m̃, R̃i
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3.3 Tensor products of L(SU(2)) representations 4 CARTAN CLASSIFICATION

3.3 Tensor products of L(SU(2)) representations
Let RΛ and RΛ′ be irreps of L(SU(2)) with highest weights Λ,Λ′ > 0 respectively. We have
dimRΛ = Λ + 1,dimRΛ′ = Λ′ + 1. The tensor product RΛ ⊗RΛ′ is a fully reducible representation
with dim(RΛ ⊗RΛ′) = (Λ + 1)(Λ′ + 1) (since SU(2) is simple):

RΛ ⊗RΛ′ =
⊕

Λ′′∈Z
Λ′′>0

LΛ′′
Λ,Λ′RΛ′′

where LΛ′′
Λ,Λ′ ∈ Z. We have bases of R(H) eigenvectors for VΛ and VΛ′ :

{vλ}, λ ∈ SΛ = {−Λ,−Λ + 2, . . . ,Λ} RΛ(H)vλ = λvλ

{v′λ′}, λ′ ∈ SΛ′ = {−Λ′,−Λ′ + 2, . . . ,Λ′} RΛ′(H)v′λ′ = λ′v′λ′

So construct a basis for Vλ ⊗ Vλ′ :

B = {vλ ⊗ v′λ′ s. t. λ ∈ SΛ, λ
′ ∈ SΛ′}

These basis vectors are eigenvectors of (RΛ ⊗RΛ′)(H):

(RΛ ⊗RΛ′)(H)(vλ ⊗ v′λ′) = RΛ(H)vλ ⊗ v′λ′ + vλ ⊗RΛ′(H)v′λ′
= (λ+ λ′)(vλ ⊗ v′λ′)

So the weights of RΛ ⊗RΛ′ are SΛ,Λ′ = {λ+ λ′ s. t. λ ∈ SΛ, λ
′ ∈ SΛ′}. The highest weight is Λ + Λ′,

and it has multiplicity one, so we must have:

RΛ ⊗RΛ′ = RΛ+Λ′ ⊕ R̃Λ,Λ′

for some remainder R̃Λ,Λ′ . The highest weight of R̃Λ,Λ′ is Λ + Λ′− 2, again with multiplicity one, so:

RΛ ⊗RΛ′ = RΛ+Λ′ ⊕RΛ+Λ′−2 ⊕ ˜̃RΛ,Λ′

We can continue in this way to obtain:

RΛ ⊗RΛ′ = RΛ+Λ′ ⊕RΛ+Λ′−2 ⊕ · · · ⊕R|Λ−Λ′|+2 ⊕R|Λ−Λ′|

where we have stopped at R|Λ−Λ′| in order to satify dim(RΛ ⊗RΛ′) = (Λ + 1)(Λ′ + 1).

Example.
R1 ⊗ R1 = R2 ⊕ R0

in Q.M.: spin 1
2 ⊗ spin 1

2 = spin 1︸ ︷︷ ︸
triplet

⊕ spin 0︸ ︷︷ ︸
singlet

4 Cartan Classification
4.1 The Killing Form
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4.1 The Killing Form 4 CARTAN CLASSIFICATION

Definition. Given a vector space V over a field F , an inner product is a symmetric bilinear
map i : V × V → F . i is said to be non-degenerate if for each v ∈ V there is a w ∈ V such
that i(v, w) 6= 0.

Given a Lie algebra g we have a “natural” inner product:

Definition. The Killing form of a Lie algebra g over a field F is the following function:

κ : g× g → F
(X,Y ) 7→ tr(adX ◦ adY )

Lemma 7. The Killing form is an inner product.

Proof. K(X ◦ Y ) is the trace of adX ◦ adY , so we should analyse this map. Choose a basis {T a}
for g. We have:

(adX ◦ adY )(Z) = [X, [Y, Z]]
= XaYbZc[T a, [T b, T c]]
= XaYbZcf

bc
d [T a, T d]

= XaYbZcf
bc
d f

ad
e T e

= M(X,Y )ceZcT e

where we have defined M(X,Y )ce = XaYbf
bc
d f

ad
e . Hence:

κ(X,Y ) = tr(M(X,Y )) = XaYb f
ad
c f bcd︸ ︷︷ ︸
κab

From this we can see that κ is both bilinear and symmetric.

It is worth saying what we mean by “natural”:

Lemma 8. κ has the following property (we say it is invariant):

κ([Z,X], Y ) + κ(X, [Z, Y ]) = 0

Proof. First note that ad[X,Y ] = [adX , adY ]. We have:

κ([Z,X], Y ) = tr
(
ad[Z,X] ◦Y

)
= tr(adZ ◦ adX ◦ adY − adX ◦ adZ ◦ adY )
= tr(adX ◦ adY ◦ adZ − adX ◦ adZ ◦ adY )

= tr
(
adX ◦ ad[Y,Z]

)
= κ(X, [Y,Z])
= −κ(X, [Z, Y ])

where we used in the third line the fact that the trace of a product is cylic in its factors.

If g is simple then κ is the unique invariant inner product (up to a constant multiple).
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4.2 Complexification 4 CARTAN CLASSIFICATION

Definition. A Lie algebra is semi-simple if it has no Abelian ideals.

Lemma 9. If g is a semi-simple Lie algebra, then we can write it as a direct sum of simple Lie
algebras:

g = g1 ⊕ g2 ⊕ · · · ⊕ gn︸ ︷︷ ︸
simple

It will be helpful to know when the Killing form is non-degenerate. It turns out:

Theorem 1 (Cartan). The Killing form is non-degenerate if and only if g is semi-simple.
Proof in one direction. Suppose g is not semi-simple. Then g has an abelian ideal j. Let D =
dim g, d = dim j. Choose a basis:

B = {T a} = {T i; i = 1, . . . , d} ∪ {Tα;α = 1, . . . , D − d}

where {T i} spans j. Since j is abelian, we have [T i, T j ] = 0 so f ija = 0. Since j is an ideal, we have
[T i, Tα] ∈ j so fαjβ = 0. Now let X = XaT

a ∈ g and Y = YiT
i ∈ j. We have:

κai = fadc f icd

= fadα f iαd (f icd = 0 for c 6= α)
= fajα︸︷︷︸

=0

f iαj (f iαd = 0 for d 6= j)

= 0

Thus κ(X,Y ) = 0 for all X ∈ g, so κ is degenerate.

4.2 Complexification

Definition. Given a real Lie algebra g, we can find a basis {T a} such that g = spanR{T a}.
The complexification of g is the complex Lie algebra gC = spanC{T a} with the same bracket.

g is said to be a real form of gC. A complex Lie algebra can have more than one real form. gC is also
a real Lie algebra with generators {T a} ∪ i{T a}. The “real” dimension of gC is dimR gC = 2 dim g.

Example. We have:

L(SU(2)) = spanR{T a = − i2σa; a = 1, 2, 3}

= {2× 2 traceless anti-Hermitian matrices}

The corresponding complexification is:

LC(SU(2)) = spanC{T a = − i2σa; a = 1, 2, 3}

= {2× 2 traceless complex matrices}

In fact we also have:

L(SL(2,C)) = {2× 2 traceless complex matrices}

So LC(SU(2)) = L(SL(2,C)).
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4.3 Cartan-Weyl basis 4 CARTAN CLASSIFICATION

Definition. A real Lie algebra of compact type has a basis in which κab = −κδab.

Theorem 2. Every complex, semi-simple, finite-dimensional Lie algebra has a real form of compact
type.

4.3 Cartan-Weyl basis

Definition. We say that X ∈ g is ad-diagonalisable if adX is diagonalisable.

Definition. A Cartan subalgebra (CSA) h of g is a maximal abelian subalgebra containing
only ad-diagonalisable elements:

(i) H ∈ h =⇒ H is ad-diagonalisable.

(ii) H,H ′ ∈ h =⇒ [H,H ′] = 0.

(iii) If X ∈ g is ad-diagonalisable and [X,H] = 0∀H ∈ h, then X ∈ h.

It is a fact that all possible choices of CSA have the same dimension.

Definition. The dimension of a CSA in g is called the rank r of g.

Example. Suppose g = LC(SU(2)). H is ad-diagonalisable, but E± are not, so we can choose
h = spanC{H} to be a CSA. Hence the rank of g is 1.

Given a CSA h we can choose a basis {H i}.

Example. Suppose g = LC(SU(n)) = {traceless complex n × n matrices}. The diagonal
elements of g are a natural choice of CSA. We can thus choose the following basis:

(H i)αβ = δαiδβi − δα(i+1)δβ(i+1)

The rank of g is n− 1.

Note that since [H i, Hj ] = 0, we have [adHi , adHj ], so the H i are simultaneously ad-diagonalisable.
We can find distinguish the eigenvectors (∈ g) into two types:

• The eigenvectors with eigenvalue zero are the basis vectors of h i.e. the H i.

• Since the CSA is maximal, all remaining vectors must have non-zero eigenvalues.
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Definition. Eigenvectors of the CSA with non-zero eigenvalues are called step operators, and
we denote them as Eα, where α is a collection of complex numbers αi, i = 1, . . . , r such that
[H i, Eα] = αiEα. α is called a root of the Lie algebra. The set of all roots of a Lie algebra is
known as its root set, denoted Φ.

Example. Suppose g = LC(SU(n)), then as before h = {traceless diagonal n ×
n complex matrices}. So we can write H ∈ h as H = diag(λ1, . . . , λn). Suppose adH X =
[H,X] = µX. Then we have:

(λl − λm)Xlm = µXlm (no summation)

The non-zero solutions of this equation gives us the step operators of LC(SU(n):

X = E(r,s) where E(r,s)
lm = δlrδms, r 6= s

Suppose H ∈ h is a general element of the CSA. We can write H = eiH
i, where the ei are complex

numbers. Then we have:
[H,Eα] = ei[H i, Eα] = α(H)Eα

where α(H) = eiα
i. So each root α defines a linear map α : h→ C. That is, the roots are elements

of h∗, the dual of h.
Henceforth we shall make the assumption that the roots are non-degenerate. This implies that the
root set Φ consists of d− r independent elements of h∗. Then we have:

Definition. The Cartan-Weyl basis for a Lie algebra is given by:

B = {H i; i = 1, . . . , r} ∪ {Eα; α ∈ Φ}

Recall that g being simple implies that the Killing form is non-degenerate. We will now prove a
series of results about the Killing form in the Cartan-Weyl basis.

Lemma 10. (i) κ(H,Eα) = 0∀H ∈ h, α ∈ Φ.

Proof. Let H ∈ h. For all H ′ ∈ h, we have:

α(H ′)κ(H,Eα) = κ(H, [H ′, Eα]) = −κ([H,H ′]︸ ︷︷ ︸
=0

, Eα) = 0

(ii) κ(Eα, Eβ) = 0∀α, β ∈ Φ s. t. α 6= −β

Proof. Let α, β ∈ Φ. For all H ′ ∈ h we have:

(α(H ′) + β(H ′))κ(Eα, Eβ) = κ([H ′, Eα], Eβ) + κ(Eα, [H ′, Eβ]) = 0

Thus α+ β 6= 0 implies κ(Eα, Eβ) = 0.

(iii) ∀H ∈ h, ∃H ′ ∈ h s. t. κ(H,H ′) 6= 0.
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Proof. Suppose that for some H ∈ h, we have κ(H,H ′) = 0∀H ′ ∈ h. Then from (i) we have
κ(H,Eα) = 0 ∀α ∈ Φ. But then that would mean that κ(H,X) = 0 ∀X ∈ g, i.e. that κ is
degenerate, which is a contradiction.

(iv) α ∈ Φ =⇒ −α ∈ Φ and κ(Eα, E−α) 6= 0.

Proof. (i) and (ii) imply together that unless −α is a root and κ(Eα, E−α) 6= 0 then we have
κ(Eα, X) = 0∀X ∈ g, implying that κ is degenerate, again a contradiction.

κ started life as a non-degenerate product. (iii) implies that κ also gives a non-degenerate inner
product on h. Let H = eiH

i, H ′ = e′iH
i. Then we can calculate κ(H,H ′) = κijeie

′
j , where κij are

the components of an invertible r × r matrix. We can find the inverse (κ−1)ij , and from this we
now get a non-degenerate product on the span of the roots in h∗:

(α, β) = αiβj(κ−1)ij

Let’s fully evaluate the structure of the Lie algebra in the Cartan-Weyl basis. We already have:

[H i, Hj ] = 0 ∀ i, j = 1, . . . , r
[H i, Eα] = αiEα ∀α ∈ Φ

Now let’s find [Eα, Eβ]. We have:

[H i, [Eα, Eβ]] = −[Eα, [Eβ, H i]]− [Eβ, [H i, Eα]]
= (αi + βi)[Eα, Eβ]

=⇒ [Eα, Eβ]
{
∝ Eα+β if α+ β ∈ Φ
= 0 otherwise (if α+ β 6= 0)

If α+ β = 0, then consider [Eα, E−α]. We have:

κ([Eα, E−α], H) = κ(Eα, [E−α, H])
= α(H)κ(Eα, E−α)︸ ︷︷ ︸

6=0

We can define Hα = [Eα, E−α]/κ(Eα, E−α) ∈ h. Hα solves κ(Hα, H) = α(H) ∀H ∈ h and
moreover since κ is non-degenerate it does so uniquely. Let Hα = ραi H

i, H = ρiH
i. We have:

κijραi ρj = αjρj ∀ ρj
=⇒ κijραi = αj

=⇒ ραi = (κ−1)ijαj

=⇒ Hα = (κ−1)ijαjH i

We thus have, for all α, β ∈ Φ, [Hα, Eβ] = (κ−1)ijαiβjEβ = (α, β)Eβ.
We have been assuming the roots are non-degenerate. Let us also assume (α, α) 6= 0. These
assumptions are relaxable, but the proofs become much longer without being very instructive. Let’s
normalise our basis:
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4.4 Root strings 4 CARTAN CLASSIFICATION

Definition. ∀α ∈ Φ:

eα =
√

2
(α, α)κ(Eα, E−αE

α

hα = 2
(α, α)H

α

Now we have, ∀α, β ∈ Φ:

[hα, hβ] = 0

[hα, eβ] = 2(α, β)
(α, α)

[eα, eβ] =


nα,βe

α+β if α+ β ∈ Φ
hα if α+ β = 0
0 otherwise

where nα,β ∈ C.
Note that we have for each α ∈ Φ a LC(SU(2)) subalgebra generated by {hα, eα, e−α}.

[hα, e±α] = ±2e±α

[eα, e−α] = hα

We call this subalgebra sl(2)α.

4.4 Root strings

Definition. Given α, β ∈ Φ with α 6= β, the α-string passing through β is the following set of
roots:

Sα,β = {β + ρα ∈ Φ; ρ ∈ Z}

For a given root string, we have a corresponding vector space Vα,β = spanC{eβ+ρα; β + ρα ∈ Sα,β}.
We also have:

[hα, eβ+ρα] = 2(α, β + ρα)
(α, α) eβ+ρα =

(2(α, β)
(α, α) + 2ρ

)
eβ+ρα

and

[e±α, eβ+ρα]
{
∝ eβ+(ρ±1)α if β + (ρ± 1)α ∈ Φ
= 0 otherwise

Vα,β is invariant under sl(2)α, and can be viewed as a representation space for a representation R
of sl(2)α. From the above, R has the following set of weights:

SR =
{2(α, β)

(α, α) + 2ρ; β + ρα ∈ Φ
}

Each of these weights has multiplicity one. Comparing this with what we have discovered about the
representations of sl(2) = LC(SU(2)), we can see that R must be an irrep of sl(2)α. Furthermore,
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4.5 Real geometry of roots 4 CARTAN CLASSIFICATION

it is finite dimensional, so we have R = RΛ for some highest weight 0 < Λ ∈ Z. Hence SR =
{−Λ,−Λ + 2, . . . ,+Λ} and so we have ρ ∈ Z and n− ≤ n = ρ ≤ n+ for integers n+ ≥ 0, n− ≤ 0
such that:

−Λ = 2(α, β)
(α, α) + 2n−

+Λ = 2(α, β)
(α, α) + 2n+

Adding these together we find an important constraint:

2(α, β)
(β, β) = −(n+ + n−) ∈ Z ∀α, β ∈ Φ

So we have:
[hα, eβ] = 2(α, β)

(α, α)︸ ︷︷ ︸
∈Z

eβ = Rα,βe
β

Where the last equality is a notational definition. In the Cartan-Weyl basis, we have [H i, Eδ] = δiEδ.

κij = κ(H i, Hj)
= tr(adHi ◦ adHj )
=
∑
δ∈Φ

δiδj

Now multiply both sides by (κ−1)jk(κ−1)ilαkβl:

κij(κ−1)jk(κ−1)ilαkβl =
∑
δ∈Φ

δiδj(κ−1)jk(κ−1)ilαkβl

=⇒ (α, β) =
∑
δ∈Φ

(α, δ)(β, δ)

=⇒ 2
(β, β) = 1

Rα,β

∑
δ∈Φ

Rα,δRβ,δ ∈ R

Hence (α, β) = Rα,β(α, α)/2 ∈ R for all α, β ∈ Φ.

4.5 Real geometry of roots

Lemma 11. h∗ = spanC{α ∈ Φ}.

Proof. Suppose α ∈ Φ do not span h∗. Then there exists a λ ∈ h∗ with (λ, α) = (κ−1)ijλiαj =
κijλiαj = 0 for all α ∈ Φ. Define Hλ = λiH

i; then we have [Hλ, H] = 0∀H ∈ h and [Hλ, E
α] =

(λ, α)Eα = 0 ∀α ∈ Φ, so [Hλ, X] = 0 ∀X ∈ g. But then j = spanC{Hλ} is a non-trivian ideal,
which contradicts simplicity of g.

We can find r = rank[g] roots to act as a basis for h∗:

{α(i) ∈ Φ; i = 1, . . . , r}

Define a real subspace h∗R ⊂ h∗ as follows:

h∗R = spanR{α(i)}
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Since the α(i) span h∗, any root β ∈ Φ can be written as β =
∑r
i=1 β

iα(i), where βi ∈ C. If we take
the inner product on both sides with α(j) we obtain:

(β, α(j))︸ ︷︷ ︸
∈R

=
r∑
i=1

βi (α(i), α(j))︸ ︷︷ ︸
∈R

The inner product is non-degenerate so we can invert it to find βi ∈ R. Thus β ∈ h∗R for all roots β.
Let λ, µ ∈ h∗R, and λ = λiα(i), µ = µiα(i). Then (λ, µ) =

∑
i,j λ

iµj(α(i), α(j)) ∈ R. Also, (λ, λ) =∑
δ∈Φ λiδ

iδjλj =
∑
δ∈Φ(λ, δ)(λ, δ) ≥ 0 with equality if and only if (λ, δ) = 0∀ δ ∈ Φ, i.e. iff λ = 0.

Therefore our inner product is a Euclidean one, and h∗R is isomorphic to n-dimensional Euclidean
space. This is very nice, as it allows us to apply all of the results familiar to us from Euclidean
geometry to the study of Lie algebras.
In particular, since (α, α) > 0∀α ∈ Φ, we can define the length of a root by |α| = +(α, α)1/2, and
the angle φ between two roots by (α, β) = |α||β| cosφ.

α

β

φ

We have:

Rα,β = 2(α, β)
(α, α) = 2 |β|

|α|
cosφ ∈ Z

Rβ,α = 2(α, β)
(β, β) = 2 |α|

|β|
cosφ ∈ Z

Multiplying these together we obtain:

4 cos2 φ ∈ Z =⇒ cosφ = ±
√
n

2 where n ∈ {0, 1, 2, 3, 4}

This constraint has the following solutions:

φ =



0 (α = β)
π
2 ((α, β) = 0)
π (α = −β)
π
6 ,

π
4 ,

π
3 ((α, β) > 0)

5π
6 ,

3π
4 ,

2π
3 ((α, β) < 0)

4.6 Simple roots

Definition. Choose some hyperplane in h∗. We can divide the root set into positive roots in
Φ+ and negative roots in Φ− by imposing that positive roots lie on one side of the hyperplane,
and negative roots on the other.
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hyperplane β

−β

δ

−δ

α−α

This is equivalent to dividing Φ = Φ+ ∪ Φ− such that, for all roots α, β:

(i) α ∈ Φ+ ⇐⇒ −α ∈ Φ−.

(ii) α, β ∈ Φ+, α+ β ∈ Φ =⇒ α+ β ∈ Φ+.

Definition. A simple root is a positive root which cannot be written as the sum of two positive
roots. The set of simple roots is denoted ΦS .

Lemma 12. (i) α, β ∈ ΦS =⇒ α− β 6∈ Φ.

Proof. Suppose α− β ∈ Φ. Then we have two cases:
• α− β ∈ Φ+ =⇒ α = (α− β) + β =⇒ α not simple.
• α− β ∈ Φ− =⇒ β − α ∈ Φ+ =⇒ β = (β − α) + α =⇒ β not simple.

(ii) α, β ∈ ΦS =⇒ Sα,β, the α-string through β, has length lα,β = 1− 2(α,β)
(α,α) ∈ N.

Proof. Recall that we can write Sα,β = {β + nα; n ∈ Z, n− ≤ n ≤ n+} with n+ ≥ 0, n− ≤ 0,
and n+ + n− = −2(α,β)

(α,α) ∈ Z. Now, (i) implies that n− = 0. Hence, n+ = −2(α,β)
(α,α) and so

lα,β = n+ − n− + 1 = 1− 2(α,β)
(α,α) ∈ N.

(iii) α, β ∈ ΦS , α 6= β =⇒ (α, β) ≤ 0. (This is a corollary of (ii).)

(iv) Any positive root β can be written as a linear combination of simple roots with positive integer
coefficients.

Proof. If β ∈ ΦS , then we are done. If β 6= ΦS then we can write β = β1 + β2 for some
positive roots β1, β2. Since the rank is finite, we can iterate on this until all of the βi are
simple roots, and then we are done.

(v) All roots α ∈ Φ can be written as α =
∑
i diα(i) with di ∈ Z, α(i) ∈ ΦS, so the simple roots

span h∗R. (This is a corollary of (iv).)
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(vi) Simple roots are linearly independent.

Proof. Consider all vectors λ ∈ h∗R. By (v) we can write λ =
∑
i ciα(i) where ci ∈ R, α(i) ∈ ΦS .

Restrict to the case where not all ci = 0. Let J± = {i s. t. ci ≷ 0}, and λ± = ±
∑
i∈J± ciα(i);

we have λ = λ+ − λ−. Then

(λ, λ) = (λ+, λ+) + (λ−, λ−)− 2(λ+, λ−)
> −2(λ+, λ−)
= +2

∑
i∈J+

∑
j∈J−

cicj︸︷︷︸
<0

(α(i), α(j))︸ ︷︷ ︸
≤0 (by (iii))

≥ 0

Hence (λ, λ) > 0. So (λ, λ) = 0 if and only if ci = 0∀ i.

(vii) There are exactly r = rank[g] simple roots.

Proof. (v) and (vi) tell us that ΦS is a basis of h∗R. Hence |ΦS | = dim h∗R = r.

From now on we will label simple roots as α(i), i = 1, . . . , r.

Definition. The Cartan matrix of a Lie algebra is an r × r matrix A with components given
by:

Aij =
2(α(i), α(j))
(α(j), α(j))

∈ Z

Note that A is not generally symmetric.
We can choose {hi = hα(i) , ei± = e±α(i)} as a basis for the Lie algebra. Then the Lie algebra
structure is as follows:

[hi, ei±] = ±2ei±
[hi, ej±] = ±Ajiej±
[ei+, ei−] = hi

with all other brackets = 0.

4.7 Classification
The Cartan classification of finite-dimensional simple complex Lie algebras has two steps:

1. Classify all possible Cartan matrices.

2. Show that a Cartan matrix uniquely determines each Lie algebra.

So first let us examine the constraints on the Cartan matrix:

(a) Aii = 2∀ i.

(b) Symmetry of the linear product gives Aij = 0 ⇐⇒ Aji = 0.

(c) (α, β) ≤ 0 for α 6= β ∈ ΦS =⇒ Aij ∈ Z≤0 for all i 6= j.
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(d) Euclidean inner product implies detA > 0.

(e) g simple implies A is not reducible.

Example. Consider r = 2. Then we have:

A =
(

2 −m
−n 2

)

where m,n > 0 and detA = 4 −mn > 0. So, up to exchange of m and n, we have (m,n) ∈
{(1, 1), (1, 2), (1, 3)}.

It can be shown that AijAji ∈ {0, 1, 2, 3} (no summation), and that simple complex Lie algebras
can have roots of at most 2 distinct lengths.
To represent the structure of a Lie algebra, we use Dynkin diagrams, which we construct in the
following way:

• Draw a node for each simple root α(i).

• Join the nodes representing α(i) and α(j) with max(|Aij |, |Aji|) ∈ {0, 1, 2, 3} lines.

• If more than one line connects two nodes, draw an arrowhead pointing from the longer root
to the shorter one.

Example. In rank 2, there are three possible Cartan matrices and associated Dynkin diagrams:(
2 −1
−1 2

)
(

2 −2
−1 2

)
(

2 −3
−1 2

)

Theorem 3 (The Cartan classification). All finite-dimensional complex simple Lie algebras must
have Dynkin diagrams of one of the following forms:

An :
1 2 n− 1 n

(LC(SU(n+ 1)))

Bn :
1 2 n− 1 n

(LC(SO(2n+ 1)))

Cn :
1 2 n− 1 n

(LC(SP (2n)))

Dn :
1 2 n− 2

n− 1

n

(LC(SO(2n)))
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or be one of five exceptional cases:

E6 :

E7 :

E8 :

F4 :
G2 :

Example. A1 = B1 = C1, and D1 isn’t a thing. So there is only one possible finite-dimensional
complex simple Lie algebra of rank 1. We can deduce:

LC(SU(2)) ' LC(SO(3)) ' LC(SP (2))

Example. In rank 2, we recover the above Dynkin diagrams. The diagrams for B2 and C2 are
identical, so we can say LC(SO(5)) ' LC(SP (4)). Note that D2’s diagram is the same as two
A1s, so we can say LC(SO(4)) ' LC(SU(2))⊕ LC(SU(2)).

Now that we know which Dynkin diagrams are avaliable, how do we reconstruct a Lie algebra g?
First we must determine the Cartan matrix A, which can be easily read off from the diagram. A
then determines the simple roots in h∗R (up to one undetermined vector). From the simple roots we
can then reconstruct all roots by forming root strings with length lij = 1−Aji ∈ N.

Example. Consider the Dynkin diagram for A2.

We can see that we must have Cartan matrix given by

A =
(

2 −1
−1 2

)

Call the simple roots α and β. We have:

2(α, β)
(α, α) = 2(α, β)

(β, β) = −1

=⇒ 2|α|
|β|

cosφ = 2|β|
|α|

cosφ = −1

=⇒ |β| = |α|, φ = 2π
3

34



5 MORE REPRESENTATIONS

The length of the α-string through β is lα,β = 1− 2(α,β)
(α,α) = 2, so α+ β is a root. No extra roots

arise from the other strings. We also have negative roots −α,−β,−α − β. So the full set of
roots is Φ = {α, β,−α,−β, α+ β,−α− β}:

α

α+ ββ

−α

−α− β −β

2π/3

5 More representations
5.1 Representation theory of g

Suppose R is a representation of g. R takes elements of the Cartan-Weyl basis to MatN (C).

H i 7→ R(H i)
Eα 7→ R(Eα)

Let’s assume R(H i) is diagonalisable. Since [R(H i), R(Hj)] = R([H i, Hj ]) = 0, the R(H i) are
simultaneously diagonalisable. V = CN is spanned by the eigenvectors of {R(H i)}. We can write
V =

⊕
λ∈SR

Vλ, where if v ∈ Vλ then R(H i)v = λiv, and λi ∈ C, i = 1, . . . , r. λ is called a weight of
R; the set of weights SR is called its weight set. Weights in general can have non-trivial multiplicity
mλ = dimVλ ≥ 1.

Example. The roots are the weights for the adjoint representation.

Consider the action of the representations of the step operators R(Eα) on v ∈ Vλ:

R(H i)R(Eα)v = (R(Eα)R(H i) + [R(H i), R(Eα)])v
= λiR(Eα)v +R([H i, Eα])v
= (λi + αi)R(Eα)v

So R(Eα)v ∈ Vλ+α if it is non-zero.
Recall that we have a set of sl(2) generators for each simple root {hi = hα(i) , ei± = e±α(i)}, obeying:

[hi, hj ] = 0
[hi, ej±] = ±Ajiej±
[ei+, ei−] = hi

with [ei±, e
j
±] generating new basis elements, and all other brackets = 0. We have:

[ei+, e
j
+] = adei

+

{
∝ eα(j)+α(i) if α(j) + α(i) ∈ Φ
= 0 otherwise
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Since the α(i)-string through α(j) has length 1−Aji, we can deduce the Serre relation:

(adei
±

)1−Aji
ej± = 0

It can be shown that the Serre relation together with the set of bracket relations for sl(2)α(i)
uniquely determines g; this is called Serre reconstruction.
Considering the action of the sl(2)α generators on V , we can see that V is a representation space
to some representation Rα of sl(2)α (in general Rα is reducible). For all v ∈ Vλ, we have:

R(hα)v = 2
(α, α)(κ−1)ijαiR(Hj)v

= 2
(α, α)(κ−1)ijαiλj

= 2(α, λ)
α, α

v

So 2(α,λ)
(α,α) ∈ Z for all λ ∈ SR, α ∈ Φ.

5.2 Root and weight lattices

Definition. The root lattice L[g] of a Lie algebra g with simple roots α(i) is defined by:

L[g] = spanZ{α(i)}

Definition. The simple coroots α̌(i) of a Lie algebra g with simple roots α(i) are given by:

α̌(i) = 2
(α(i), α(i))

α(i)

Definition. The coroot lattice Ľ[g] of a Lie algebra g with simple coroots α̌(i) is defined as:

Ľ[g] = spanZ{α̌(i)}

Definition. The weight lattice LW [g] of a Lie algebra g is the dual lattice of its coroot lattice:

LW [g] = Ľ∗[g] = {λ ∈ h∗R s. t.(λ, µ) ∈ Z∀µ ∈ Ľ[g]}

In particular:

λ ∈ LW [g] ⇐⇒ (λ, α̌(i)) =
2(α(i), λ)
(α(i), α(i))

∈ Z
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So the weights of any representation R of g all lie in LW [g]. The simple coroots are a basis for the
coroot lattice, so we have a dual basis for the weight lattice {ω(i)} where:

(α̌(i), ω(j)) =
2(α(i), ω(j))
(α(i), α(i))

= δij (∗)

The ω(i) are called fundamental weights of g. Since the simple roots span h∗R, we can write
ω(i) =

∑r
j=1Bijα(j) for some real matrix B. With (∗) this yields:

r∑
k=1

2(α(i), α(k))
(α(i), α(i))

Bjk = AkiBjk = δij

In other words, B is the inverse of A, so we can write:

α(i) =
r∑
j=1

Aijω(j)

Example. Consider g = A2. Then we have shown:

A =
(

2 −1
−1 2

)
so:

α = α(1) = 2ω(1) − ω(2)

β = α(2) = −ω(1) + 2ω(2)

Inverting these, we find:

ω(1) = 1
3(2α+ β)

ω(2) = 1
3(α+ 2β)

α

β

ω(2)

ω(1)

Any weight λ ∈ SR ⊂ LW [g] can be written as a linear combination of the fundamental weights:

λ =
r∑
i=1

λiω(i)
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λi ∈ Z are known as the Dynkin labels of λ.
Every finite dimensional representation R of g has a highest weight, i.e. a Λ ∈ SR such that
R(Eα)v = 0 for all α ∈ Φ+ and v ∈ VΛ. If the highest weight is unique and non-degenerate, then
RΛ is a finite dimensional irreducible representation. The rest of the states in the irrep can be
found by acting with lowering generators R(E−α), α ∈ Φ+ on VΛ:

vλ = R(E−α1)R(E−α2) . . . R(E−αl)vΛ

Every weight of the representation, which we will call RΛ, can be written as:

λ = Λ− µ where µ =
r∑
i=1

µiα(i), µ
i ∈ Z, µi ≥ 0

The highest weight is also sometimes called the dominant weight.
The following is a useful result:

Lemma 13. For any finite dimensional representation of g, if λ =
∑r
i=1 λ

iω(i) ∈ SR then λ −
m(i)α(i) ∈ SR where m(i) ∈ Z, 0 ≤ m(i) ≤ λi.

Example. Consider g = A2, the fundamental representation has highest weight Dynkin labels
(1, 0) = (Λ1,Λ2). This implies Λ = ω(1) ∈ Sf , which then by the proposition implies Λ− α(1) =
−ω(1) + ω(2) ∈ Sf . Applying the proposition again, we have −ω(1) + ω(2) − α(2) = −ω(2) ∈ Sf .
There are no more weights, so we have:

Sf = {ω(1),−ω(1) + ω(2),−ω(2)}

Example. Consider general irreps of A2. For each dominant integral weight Λ, we can write
Λ = Λ1ω(1) + Λ2ω(2), with 0 ≤ Λ1,Λ2 ∈ Z, and we get an irrep R(Λ1,Λ2) of A2. It can be shown
that:

• dimR(Λ1,Λ2) = 1
2(Λ1 + 1)(Λ2 + 1)(Λ1 + Λ2 + 2).

• If Λ1 6= Λ2 then we have R(Λ1,Λ2) = R̄(Λ2,Λ1) and λ ∈ S(Λ1,Λ2) =⇒ −λ ∈ S(Λ2,Λ1).

6 Symmetries in Quantum Mechanics
Consider a generic quantum mechanical system with energy levels E0 < E1 < E2 < . . . for a
Hamiltonian Ĥ. The states of the system are elements of a Hilbert space:

H =
⊕
n≥0
Hn where Ĥ |ψ〉 = En |ψ〉 ∀ |ψ〉 ∈ Hn

Definition. A symmetry transformation of a system is a transformation |ψ〉 7→ |ψ′〉 = Û |ψ〉,
where Û : H → H is a unitary operator such that ÛĤÛ † = Ĥ.

Under a symmetry transformation, the inner product is preserved, and the energy is invariant.
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6.1 Hadronic physics 6 SYMMETRIES IN QUANTUM MECHANICS

Definition. A conserved quantity is an observable Î = Î† such that [Î , Ĥ] = 0.

If Î is conserved, then Û = exp
(
isÎ
)
, s ∈ R is a symmetry transformation.

Suppose we have a maximal set of linearly independent conserved quantities {Îa s. t.[Îa, Ĥ] = 0, a =
1, . . . , d}. Then gR = spanR{iÎa; a = 1, . . . , d} is a real Lie algebra with bracket equal to the
operator commutator.
Consider all symmetry transformations of the form Û = exp

(
X̂
)

where X̂ ∈ gR. These form a Lie
group G, and moreover G is compact (since G is a subgroup of some product of unitary groups).
As [X̂, Ĥ] = 0∀ X̂ ∈ gR, the Hn are invariant under the action of G or gR.
Each Hn carries a representation Dn of G, dn of gR such that Dn(Û) = exp

(
dn(X̂)

)
∈ MatNn(C)

where Nn = dimHn. This representation must be unitary, i.e.:

D−1
n (Û) = Dn(Û) or equivalently dn(X̂)† = −dn(X̂)

Note that all finite dimensional representations of a compact G are automatically unitary.

6.1 Hadronic physics
Hadronic physics is the study of the hadrons: mesons (which are bosons) and baryons (which are
fermions). The following isn’t the most modern approach, but it is one of the first and simplest
examples of the application of Lie theory to particle physics. We will refer to isospin I and
hypercharge Y . These are quantum numbers associated with the strong interaction; it is not
necessary to know their details. The first few hadrons to be known about are listed below.

Q M I

π+ +1 139 MeV +1
π0 0 135 MeV 0
π− −1 139 MeV +1

(a) Mesons.

Q M I

p +1 938 MeV +1
2

n 0 940 MeV −1
2

(b) Baryons.

Table 1: The first few hadrons discovered.

It was observed that isospin obeys an approximate SU(2) symmetry, with Cartan element H = 2I.
The proton and the neutron sit in the R1 representation, while the π mesons sit in the R2
representation:

(
|p〉
|n〉

)
∼ R1


∣∣π+〉∣∣π0〉
|π−〉

 ∼ R2

Soon many more mesons and baryons were discovered, along with the new conserved quantum
number hypercharge and many unexplained approximate degeneracies. We can plot the 8 lightest
mesons in the I-Y plane:
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I

Y

π0

η

π+π−

K+K0

K− K̄0

The 8 lightest baryons form a similar shape:

I

Y

Λ

ε0

ε+ε−

pn

Ξ− Ξ0

Consider now the Lie algebra gR = L(SU(3)), and in particular its representation 8 = R(1,1). If we
choose the following Cartan generators:

H1 =

1 0 0
0 −1 0
0 0 0

 H2 =

0 0 0
0 1 0
0 0 −1


and set I = 1

2H
1, Y = 1

3(H1 + 2H2), then it is easy to calculate that the weights of R(1,1) match
the quantum numbers plotted above. If we do a similar investigation for the other known mesons
and baryons, we find:

Mesons live in: 1 = R(0,0) and 8 = R(1,1),
Baryons live in: 8 = R(1,1), 10 = R(3,0) and 1̄0 = R(0,3)

The immediate question to ask is: why only 1, 8 and 10, and why do the mesons and baryons
only live in their corresponding representations? There are more representations of SU(3), e.g.
3, 3̄, 6, 6̄, . . .
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The answer came from Gell-Mann, who proposed that all hadrons are composed of smaller more
fundamental fermions called quarks. Quarks live in 3 = R(1,0), and antiquarks live in 3̄ = R(0,1).
The key insight is to say that mesons are combinations of a quark and an antiquark, and that
baryons are combinations of three quarks (or three antiquarks).
Consider a meson in this regime. It has state given by |ψ1〉 ⊗ |ψ2〉 ∈ H(1) ⊗H(2), where |ψ1〉 , |ψ2〉
are the states of the quark and antiquark respectively. Suppose we have a conserved quantity Î1 on
H(1) and Î2 on H(2). The operator corresponding to their sum for the entire meson is given by:

I = Î1 ⊗ 1(2) + 1(1) ⊗ Î2

We see that this is like the elements of the tensor product of two representation. Thus we can
deduce that mesons (qq̄) live in 3 ⊗ 3̄ = 1 ⊕ 8. Similarly we have that baryons (qqq) live in
3⊗3⊗3 = 1⊕8⊕8⊕10. So we see exactly why the baryons and mesons have their representations.
In order to see exactly why we only have qq̄ and qqq, it is necessary to study gauge QCD.

6.2 Gauge Theory

Definition. A gauge symmetry is a redundancy in the description of a system.

Example. In classical electromagnetism, we define the non-observable scalar potential Φ(x, t)
and vector potential A(x, t). What we then observe are the electric field E = −∇Φ + ∂A

∂t and
magnetic field V =∇×A. E and B are invariant under a gauge transformation given by:

Φ→ Φ + ∂α

∂t
A→ A +∇α

where α = α(x, t) is some time-varying field. In a relativistic treatment we have a 4-vector
potential aµ given by:

aµ =
{

Φ if µ = 0
Ai if µ = i = 1, 2, 3

and gauge transformations aµ → aµ + ∂µα. The electric and magnetic fields live in the
field-strength tensor fµν :

fµν = ∂µaν − ∂νaµ Ei = f0i, Bi = 1
2εijkfjk

We have a Lagrangian given by:
LEM = − 1

4g2 fµνf
µν

where we use a Minkowski metric with signature +−−−.
Quantisation leads to a spin 1, massles, free particle that we call the photon. For later
convenience, we will define Aµ = −iaµ and Fµν = −ifµν .

Consider a complex scalar field φ : R3,1 → C with Lagrangian given by:

Lφ = ∂µφ
∗∂µφ− W (φ∗φ)︸ ︷︷ ︸

interactions
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This Lagrangian is invariant under a global U(1) symmetry:

φ→ gφ, φ∗ → g−1φ∗ where g = exp(iδ) ∈ U(1), δ ∈ [0, 2π)

Consider infinitesimal such transformations, i.e. those given by g = exp(εX) where ε � 1 and
X ∈ iR = L(U(1)). We have that g ≈ 1 + εX so these transformations are:

φ→ φ+ δXφ where δXφ = εXφ

In general we will write δXx for the difference in a quantity x after the transformation. Working to
first order in ε, we have δX(φφ∗) = 0 and δXL = 0 for all X ∈ iR.
Now generalise X to depend on spacetime. We have δX(∂µφ) = ∂µ(δXφ) = ∂µ(εXφ) = ε∂µXφ+
εX∂µφ. Now Lφ is no longer invariant in general. In order to restore gauge-invariance, we replace
all partial derivatives in the Lagrangian with a covariant derivative Dµ, defined in the following
way:

Dµ = ∂µ +Aµ where Aµ : R3,1 → L(U(1)) = iR

Aµ is known as a U(1) gauge field and must transform as δXAµ = −ε∂µX. Then we have:

δX(Dµφ) = δX(∂µφ+Aµφ)
= ∂µ(δXφ) + (δXAµ)φ+Aµ(δXφ)
= ∂µ(εXφ) +AµεXφ− ε∂µXφ
= ε∂µXφ+ εX∂µφ+AµεXφ− ε∂µXφ
= εXDµφ

Thus, to first order, we have that (Dµφ)∗(Dµφ) is gauge invariant. The most general gauge invariant
Lagrangian we can have is:

L = 1
4g2FµνF

µν + (Dµφ)∗(Dµφ)−W (φ∗φ)

where Fµν = ∂µAν − ∂νAµ. It can be shown that if we want our theory to be renormalisable, we
must further have W (Y ) = αY + βY 2.
Now we will generalise this to any Lie group G. Choose a representation D of G of dimension N
with representation space V ' CN . We use the standard inner product (u, v) = u†v. Suppose we
have a V -valued scalar field φ : R3,1 → V , with the following Lagrangian:

Lφ = (∂µφ, ∂µφ)−W [(φ, φ)]

If D is unitary (so D(g)† = D(g) = 1), then Lφ is invariant under φ→ D(g)φ for all g ∈ G. Near
the identity, write g = exp(εX) where ε � 1 and X ∈ L(G). Then we have D(g) = exp(εR(X))
where R : L(G)→ MatN (C) defines a unitary representation of L(G) (so R(X) = −R(X)†). For
ε� 1, we have D(g) ≈ 1 + εR(X). Under an infinitesimal transformation:

φ→ φ+ δXφ, δXφ = εR(X)φ

Now let’s do what we did before and “gauge” the symmetry i.e. we let X be a L(G) valued function
of spacetime. Define the covariant derivative by:

Dµ(φ) = ∂µφ+R(Aµ)φ where Aµ : R3,1 → L(G)

Aµ is the gauge field for G, and must transform as:

δXAµ = −ε∂µX + ε[X,Aµ] ∈ L(G)
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To see why, consider the action of the transformation on Dµφ:

δX(Dµφ) = δX(∂µφ+R(Aµ)φ)
= ∂µ(δXφ) +R(Aµ)δXφ+R(δXAµ)φ
= ∂µ(εR(X)φ) + εR(Aµ)R(X)φ− εR(∂µX) + εR([X,Aµ])
= ε(∂µR(X))φ+ εR(X)∂µφ+ εR(X)R(Aµ)φ

+ ε[R(Aµ), R(X)]φ− εR(∂µX)φ+ ε[R(X), R(Aµ)]φ
= εR(X)Dµφ

Thus:
δX [(Dµφ,D

µφ)] = ε(R(X)Dµφ,D
µφ) + ε(Dµφ,R(X), Dµφ) = 0

since R(X)† = −R(X). Hence the Lagrangian is conserved.
Define the field-strength tensor as:

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]

Under a gauge transformation, we have:

δX(Fµν) = ∂µ(δXAν)− ∂ν(δXAµ) + [δXAµ, Aν ] + [Aµ, δXAν ]
= −ε∂µ∂νX + ε∂µ([X,Aν ]) + ε∂ν∂µX − ε∂ν([X,Aµ])
− ε[∂µX,Aν ]− ε[Aµ, ∂νX] + ε[[X,Aµ], Aν ] + ε[Aµ, [X,Aν ]]

= ε[X, ∂µAν ]− ε[X, ∂νAµ]− ε([Aν , [X,Aµ]] + [Aµ, [Aν , X]])
= ε[X, ∂µAν − ∂νAµ] + ε[X, [Aµ, Aν ]]
= ε[X,Fµν ]

So for a gauge invariant Lagrangian that includes Fµν , we can use the Killing form:

LA = 1
g2κ(Fµν , Fµν)

=⇒ δXLA = 1
g2 [κ(δXFµν , Fµν) + κ(Fµν , δX)]

= ε

g2 [κ([X,Fµν ], Fµν) + κ(Fµν , [X,Fµν ])]

= 0

This provides a sensible kinetic term if L(G) is of compact type. Note that LA contains both
kinetic terms and interaction terms; if we take A→ gA then we have:

LA ∼ ∂A∂A kinetic term

+g[A,A]∂A 3-vertex

+g2[A,A]2 4-vertex
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This is Yang-Mills theory.
There is a large family of consistent gauge theories provided by the Cartan classification. We specify
the following:

• The gauge group is specified by the selection of a complex simple Lie algebra gC. This has a
real form of compact type gR that is equal to L(G) for a compact Lie group G.

• The matter content is specified by choosing a unitary representation of gR for matter to
live in. Then the matter field is φΛ : R3,1 → VΛ, where VΛ is the representation space,
and the subscript Λ specifies the dominant integral weights of the representation: Λ ∈ S =
{dominant integral weights}.

Then the most general possible Lagrangian for our theory is:

LΛ = 1
g2κ(Fµν , Fµν) +

∑
Λ∈S

(DµφΛ, D
µφΛ)−W ({(φΛ, φΛ); Λ ∈ S})

6.3 The Standard Model
The gauge group of the Standard Model is:

G = U(1)× SU(2)× SU(3)

This gives rise to the following types of particles:

• Gauge terms give rise to the gauge bosons:

Aµ : R3,1 → L(U(1))︸ ︷︷ ︸
photon

⊕L(SU(2))︸ ︷︷ ︸
W±,Z

⊕L(SU(3))︸ ︷︷ ︸
8 gluons

The part of the Lagrangian which corresponds to the gauge bosons is:

Lg = 1
4g2
U(1)

F (1)
µν F

(1)µν + 1
g2
SU(2)

κ
(
F (2)
µν , F

(2)µν
)

+ 1
g2
SU(3)

κ
(
F (3)
µν , F

(3)µν
)

• We have a single scalar particle φ : R3,1 → C2 (the representation space for R1), the Higgs
boson. Higgs boson states live in the following representation:

( 2︸︷︷︸
SU(2)

, 1︸︷︷︸
SU(3)

)+ 1
2 ←U(1) charge

The Lagrangian for the Higgs particle is:

Ls = (Dµφ,D
µφ)−W (φ2)

where φ2 = (φ, φ) and W (φ2) = −µ2φ2 + λφ4. If we plot W (φ2) against |φ| we can see that
the vacuum of the Higgs boson is not at |φ| = 0:

44



6.3 The Standard Model 6 SYMMETRIES IN QUANTUM MECHANICS

|φ|

W (φ2)

vacuum

• Finally we have 3 generations of fermions, divided into two types:
– The quarks in the following representation:

(2, 3) 1
6︸ ︷︷ ︸

LH spinors

⊕ (1, 3) 2
3
⊕ (1, 3)− 1

3︸ ︷︷ ︸
RH spinors

– The leptons in the following representation:

(2, 1)− 1
2
⊕ (1, 1)−1

The terms for the Lagrangian for the fermions are each given by:

Lf = ψ̄αγµαβDµψ
α + φψψ̄

The φψψ̄ terms are known as Yukawa couplings.

Fin
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